Acetylcholine release from the carotid body by hypoxia: evidence for the involvement of autoinhibitory receptors.

نویسندگان

  • Dong-Kyu Kim
  • Nanduri R Prabhakar
  • Ganesh K Kumar
چکیده

The purpose of the present study was to investigate whether hypoxia influences acetylcholine (ACh) release from the rabbit carotid body and, if so, to determine the mechanism(s) associated with this response. ACh is expressed in the rabbit carotid body (5.6 +/- 1.3 pmol/carotid body) as evidenced by electrochemical analysis. Immunocytochemical analysis of the primary cultures of the carotid body with antibody specific to ACh further showed that ACh-like immunoreactivity is localized to many glomus cells. The effect of hypoxia on ACh release was examined in ex vivo carotid bodies harvested from anesthetized rabbits. The basal release of ACh during normoxia ( approximately 150 Torr) averaged 5.9 +/- 0.5 fmol.min-1.carotid body-1. Lowering the Po2 to 90 and 20 Torr progressively decreased ACh release by approximately 15 and approximately 68%, respectively. ACh release returned to the basal value on reoxygenation. Simultaneous monitoring of dopamine showed a sixfold increase in dopamine release during hypoxia. Hypercapnia (21% O2 + 10% CO2) as well as high K+ (100 mM) facilitated ACh release from the carotid body, suggesting that hypoxia-induced inhibition of ACh release is not due to deterioration of the carotid body. Hypoxia had no significant effect on acetylcholinesterase activity in the medium, implying that increased hydrolysis of ACh does not account for hypoxia-induced inhibition of ACh release. In the presence of either atropine (10 microM) or domperidone (10 microM), hypoxia stimulated ACh release. These results demonstrate that glomus cells of the rabbit carotid body express ACh and that hypoxia overall inhibits ACh release via activation of muscarinic and dopaminergic autoinhibitory receptors in the carotid body.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Sílvia Vilares Conde

Carotid bodies (CB) are peripheral chemoreceptor organs sensing changes in arterial blood O2, CO2 and pH levels. Hypoxia and acidosis or hypercapnia activates CB chemoreceptor cells, which respond by releasing neurotransmitters in order to increase the action potential frequency in their sensory nerve, the carotid sinus nerve (CSN). CSN activity is integrated in the brainstem to induce a fan of...

متن کامل

Localization and function of cat carotid body nicotinic receptors.

Acetylcholine and nicotinic agents excite cat carotid body chemoreceptors and modify their response to natural stimuli. The present experiments utilized [125I]alpha-bungarotoxin [( 125I]alpha-BGT) to localize within the chemosensory tissue the possible sites of action of exogenous and endogenous nicotinic cholinergic substances. In vitro equilibrium binding studies of intact carotid bodies dete...

متن کامل

P136: Role of Muscarinic Receptors in Schizophrenia

Schizophrenia is a severe psychiatric illness with a lifetime prevalence of ˜1% that imposes a huge toll on patients, their families and public health services worldwide. Delusions, hallucinations, disorganized speech, grossly disorganized or catatonic behavior and negative symptoms constitute the core symptoms of schizophrenia. Although the neurotransmitter dopamine plays a prominent role in t...

متن کامل

Actions and release characteristics of secretin in the rat cerebellum

Secretin, a peptide hormone of the gastrointestinal system, has been implicated in the etiology of autism. Our laboratory previously demonstrated the expression of secretin and its receptors in specific central neurons, and found for the first time that secretin is neuroactive in the cerebellum. We showed that bath application of secretin facilitated the release of GABA from terminals of basket...

متن کامل

Actions and release characteristics of secretin in the rat cerebellum

Secretin, a peptide hormone of the gastrointestinal system, has been implicated in the etiology of autism. Our laboratory previously demonstrated the expression of secretin and its receptors in specific central neurons, and found for the first time that secretin is neuroactive in the cerebellum. We showed that bath application of secretin facilitated the release of GABA from terminals of basket...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Journal of applied physiology

دوره 96 1  شماره 

صفحات  -

تاریخ انتشار 2004